Month End Sale - 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: spcl70

AIF-C01 PDF

$33

$109.99

3 Months Free Update

  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions

AIF-C01 PDF + Testing Engine

$52.8

$175.99

3 Months Free Update

  • Exam Name: AWS Certified AI Practitioner Exam
  • Last Update: May 24, 2025
  • Questions and Answers: 142
  • Free Real Questions Demo
  • Recommended by Industry Experts
  • Best Economical Package
  • Immediate Access

AIF-C01 Engine

$39.6

$131.99

3 Months Free Update

  • Best Testing Engine
  • One Click installation
  • Recommended by Teachers
  • Easy to use
  • 3 Modes of Learning
  • State of Art Technology
  • 100% Real Questions included

AIF-C01 Practice Exam Questions with Answers AWS Certified AI Practitioner Exam Certification

Question # 6

How can companies use large language models (LLMs) securely on Amazon Bedrock?

A.

Design clear and specific prompts. Configure AWS Identity and Access Management (IAM) roles and policies by using least privilege access.

B.

Enable AWS Audit Manager for automatic model evaluation jobs.

C.

Enable Amazon Bedrock automatic model evaluation jobs.

D.

Use Amazon CloudWatch Logs to make models explainable and to monitor for bias.

Full Access
Question # 7

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Full Access
Question # 8

An ML research team develops custom ML models. The model artifacts are shared with other teams for integration into products and services. The ML team retains the model training code and data. The ML team wants to builk a mechanism that the ML team can use to audit models.

Which solution should the ML team use when publishing the custom ML models?

A.

Create documents with the relevant information. Store the documents in Amazon S3.

B.

Use AWS A] Service Cards for transparency and understanding models.

C.

Create Amazon SageMaker Model Cards with Intended uses and training and inference details.

D.

Create model training scripts. Commit the model training scripts to a Git repository.

Full Access
Question # 9

A company is using an Amazon Bedrock base model to summarize documents for an internal use case. The company trained a custom model to improve the summarization quality.

Which action must the company take to use the custom model through Amazon Bedrock?

A.

Purchase Provisioned Throughput for the custom model.

B.

Deploy the custom model in an Amazon SageMaker endpoint for real-time inference.

C.

Register the model with the Amazon SageMaker Model Registry.

D.

Grant access to the custom model in Amazon Bedrock.

Full Access
Question # 10

An AI practitioner is using an Amazon Bedrock base model to summarize session chats from the customer service department. The AI practitioner wants to store invocation logs to monitor model input and output data.

Which strategy should the AI practitioner use?

A.

Configure AWS CloudTrail as the logs destination for the model.

B.

Enable invocation logging in Amazon Bedrock.

C.

Configure AWS Audit Manager as the logs destination for the model.

D.

Configure model invocation logging in Amazon EventBridge.

Full Access
Question # 11

A financial institution is building an AI solution to make loan approval decisions by using a foundation model (FM). For security and audit purposes, the company needs the AI solution's decisions to be explainable.

Which factor relates to the explainability of the AI solution's decisions?

A.

Model complexity

B.

Training time

C.

Number of hyperparameters

D.

Deployment time

Full Access
Question # 12

A company wants to create a new solution by using AWS Glue. The company has minimal programming experience with AWS Glue.

Which AWS service can help the company use AWS Glue?

A.

Amazon Q Developer

B.

AWS Config

C.

Amazon Personalize

D.

Amazon Comprehend

Full Access
Question # 13

A company is building an ML model to analyze archived data. The company must perform inference on large datasets that are multiple GBs in size. The company does not need to access the model predictions immediately.

Which Amazon SageMaker inference option will meet these requirements?

A.

Batch transform

B.

Real-time inference

C.

Serverless inference

D.

Asynchronous inference

Full Access
Question # 14

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company needs the LLM to produce more consistent responses to the same input prompt.

Which adjustment to an inference parameter should the company make to meet these requirements?

A.

Decrease the temperature value

B.

Increase the temperature value

C.

Decrease the length of output tokens

D.

Increase the maximum generation length

Full Access
Question # 15

A company wants to develop an Al application to help its employees check open customer claims, identify details for a specific claim, and access documents for a claim. Which solution meets these requirements?

A.

Use Agents for Amazon Bedrock with Amazon Fraud Detector to build the application.

B.

Use Agents for Amazon Bedrock with Amazon Bedrock knowledge bases to build the application.

C.

Use Amazon Personalize with Amazon Bedrock knowledge bases to build the application.

D.

Use Amazon SageMaker AI to build the application by training a new ML model.

Full Access
Question # 16

A company wants to create a chatbot by using a foundation model (FM) on Amazon Bedrock. The FM needs to access encrypted data that is stored in an Amazon S3 bucket.

The data is encrypted with Amazon S3 managed keys (SSE-S3).

The FM encounters a failure when attempting to access the S3 bucket data.

Which solution will meet these requirements?

A.

Ensure that the role that Amazon Bedrock assumes has permission to decrypt data with the correct encryption key.

B.

Set the access permissions for the S3 buckets to allow public access to enable access over the internet.

C.

Use prompt engineering techniques to tell the model to look for information in Amazon S3.

D.

Ensure that the S3 data does not contain sensitive information.

Full Access
Question # 17

A company wants to keep its foundation model (FM) relevant by using the most recent data. The company wants to implement a model training strategy that includes regular updates to the FM.

Which solution meets these requirements?

A.

Batch learning

B.

Continuous pre-training

C.

Static training

D.

Latent training

Full Access
Question # 18

An AI practitioner needs to improve the accuracy of a natural language generation model. The model uses rapidly changing inventory data.

Which technique will improve the model's accuracy?

A.

Transfer learning

B.

Federated learning

C.

Retrieval Augmented Generation (RAG)

D.

One-shot prompting

Full Access
Question # 19

A company built a deep learning model for object detection and deployed the model to production.

Which AI process occurs when the model analyzes a new image to identify objects?

A.

Training

B.

Inference

C.

Model deployment

D.

Bias correction

Full Access
Question # 20

A pharmaceutical company wants to analyze user reviews of new medications and provide a concise overview for each medication. Which solution meets these requirements?

A.

Create a time-series forecasting model to analyze the medication reviews by using Amazon Personalize.

B.

Create medication review summaries by using Amazon Bedrock large language models (LLMs).

C.

Create a classification model that categorizes medications into different groups by using Amazon SageMaker.

D.

Create medication review summaries by using Amazon Rekognition.

Full Access
Question # 21

A retail store wants to predict the demand for a specific product for the next few weeks by using the Amazon SageMaker DeepAR forecasting algorithm.

Which type of data will meet this requirement?

A.

Text data

B.

Image data

C.

Time series data

D.

Binary data

Full Access
Question # 22

A company has thousands of customer support interactions per day and wants to analyze these interactions to identify frequently asked questions and develop insights.

Which AWS service can the company use to meet this requirement?

A.

Amazon Lex

B.

Amazon Comprehend

C.

Amazon Transcribe

D.

Amazon Translate

Full Access
Question # 23

A manufacturing company wants to create product descriptions in multiple languages.

Which AWS service will automate this task?

A.

Amazon Translate

B.

Amazon Transcribe

C.

Amazon Kendra

D.

Amazon Polly

Full Access
Question # 24

A company is building an ML model. The company collected new data and analyzed the data by creating a correlation matrix, calculating statistics, and visualizing the data.

Which stage of the ML pipeline is the company currently in?

A.

Data pre-processing

B.

Feature engineering

C.

Exploratory data analysis

D.

Hyperparameter tuning

Full Access
Question # 25

An education provider is building a question and answer application that uses a generative AI model to explain complex concepts. The education provider wants to automatically change the style of the model response depending on who is asking the question. The education provider will give the model the age range of the user who has asked the question.

Which solution meets these requirements with the LEAST implementation effort?

A.

Fine-tune the model by using additional training data that is representative of the various age ranges that the application will support.

B.

Add a role description to the prompt context that instructs the model of the age range that the response should target.

C.

Use chain-of-thought reasoning to deduce the correct style and complexity for a response suitable for that user.

D.

Summarize the response text depending on the age of the user so that younger users receive shorter responses.

Full Access
Question # 26

A company deployed an AI/ML solution to help customer service agents respond to frequently asked questions. The questions can change over time. The company wants to give customer service agents the ability to ask questions and receive automatically generated answers to common customer questions. Which strategy will meet these requirements MOST cost-effectively?

A.

Fine-tune the model regularly.

B.

Train the model by using context data.

C.

Pre-train and benchmark the model by using context data.

D.

Use Retrieval Augmented Generation (RAG) with prompt engineering techniques.

Full Access
Question # 27

A company wants to deploy a conversational chatbot to answer customer questions. The chatbot is based on a fine-tuned Amazon SageMaker JumpStart model. The application must comply with multiple regulatory frameworks.

Which capabilities can the company show compliance for? (Select TWO.)

A.

Auto scaling inference endpoints

B.

Threat detection

C.

Data protection

D.

Cost optimization

E.

Loosely coupled microservices

Full Access
Question # 28

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Full Access
Question # 29

Which AWS service or feature can help an AI development team quickly deploy and consume a foundation model (FM) within the team's VPC?

A.

Amazon Personalize

B.

Amazon SageMaker JumpStart

C.

PartyRock, an Amazon Bedrock Playground

D.

Amazon SageMaker endpoints

Full Access
Question # 30

A company wants to assess the costs that are associated with using a large language model (LLM) to generate inferences. The company wants to use Amazon Bedrock to build generative AI applications.

Which factor will drive the inference costs?

A.

Number of tokens consumed

B.

Temperature value

C.

Amount of data used to train the LLM

D.

Total training time

Full Access
Question # 31

A company is using a pre-trained large language model (LLM) to extract information from documents. The company noticed that a newer LLM from a different provider is available on Amazon Bedrock. The company wants to transition to the new LLM on Amazon Bedrock.

What does the company need to do to transition to the new LLM?

A.

Create a new labeled dataset

B.

Perform feature engineering.

C.

Adjust the prompt template.

D.

Fine-tune the LLM.

Full Access
Question # 32

A company manually reviews all submitted resumes in PDF format. As the company grows, the company expects the volume of resumes to exceed the company's review capacity. The company needs an automated system to convert the PDF resumes into plain text format for additional processing.

Which AWS service meets this requirement?

A.

Amazon Textract

B.

Amazon Personalize

C.

Amazon Lex

D.

Amazon Transcribe

Full Access
Question # 33

A company is implementing the Amazon Titan foundation model (FM) by using Amazon Bedrock. The company needs to supplement the model by using relevant data from the company's private data sources.

Which solution will meet this requirement?

A.

Use a different FM

B.

Choose a lower temperature value

C.

Create an Amazon Bedrock knowledge base

D.

Enable model invocation logging

Full Access
Question # 34

A company is implementing intelligent agents to provide conversational search experiences for its customers. The company needs a database service that will support storage and queries of embeddings from a generative AI model as vectors in the database.

Which AWS service will meet these requirements?

A.

Amazon Athena

B.

Amazon Aurora PostgreSQL

C.

Amazon Redshift

D.

Amazon EMR

Full Access
Question # 35

Which term describes the numerical representations of real-world objects and concepts that AI and natural language processing (NLP) models use to improve understanding of textual information?

A.

Embeddings

B.

Tokens

C.

Models

D.

Binaries

Full Access
Question # 36

A company wants to develop an educational game where users answer questions such as the following: "A jar contains six red, four green, and three yellow marbles. What is the probability of choosing a green marble from the jar?"

Which solution meets these requirements with the LEAST operational overhead?

A.

Use supervised learning to create a regression model that will predict probability.

B.

Use reinforcement learning to train a model to return the probability.

C.

Use code that will calculate probability by using simple rules and computations.

D.

Use unsupervised learning to create a model that will estimate probability density.

Full Access
Question # 37

In which stage of the generative AI model lifecycle are tests performed to examine the model's accuracy?

A.

Deployment

B.

Data selection

C.

Fine-tuning

D.

Evaluation

Full Access
Question # 38

A company wants to enhance response quality for a large language model (LLM) for complex problem-solving tasks. The tasks require detailed reasoning and a step-by-step explanation process.

Which prompt engineering technique meets these requirements?

A.

Few-shot prompting

B.

Zero-shot prompting

C.

Directional stimulus prompting

D.

Chain-of-thought prompting

Full Access
Question # 39

An AI practitioner is using a large language model (LLM) to create content for marketing campaigns. The generated content sounds plausible and factual but is incorrect.

Which problem is the LLM having?

A.

Data leakage

B.

Hallucination

C.

Overfitting

D.

Underfitting

Full Access
Question # 40

A company is building a large language model (LLM) question answering chatbot. The company wants to decrease the number of actions call center employees need to take to respond to customer questions.

Which business objective should the company use to evaluate the effect of the LLM chatbot?

A.

Website engagement rate

B.

Average call duration

C.

Corporate social responsibility

D.

Regulatory compliance

Full Access
Question # 41

A digital devices company wants to predict customer demand for memory hardware. The company does not have coding experience or knowledge of ML algorithms and needs to develop a data-driven predictive model. The company needs to perform analysis on internal data and external data.

Which solution will meet these requirements?

A.

Store the data in Amazon S3. Create ML models and demand forecast predictions by using Amazon SageMaker built-in algorithms that use the data from Amazon S3.

B.

Import the data into Amazon SageMaker Data Wrangler. Create ML models and demand forecast predictions by using SageMaker built-in algorithms.

C.

Import the data into Amazon SageMaker Data Wrangler. Build ML models and demand forecast predictions by using an Amazon Personalize Trending-Now recipe.

D.

Import the data into Amazon SageMaker Canvas. Build ML models and demand forecast predictions by selecting the values in the data from SageMaker Canvas.

Full Access
Question # 42

A company has built an image classification model to predict plant diseases from photos of plant leaves. The company wants to evaluate how many images the model classified correctly.

Which evaluation metric should the company use to measure the model's performance?

A.

R-squared score

B.

Accuracy

C.

Root mean squared error (RMSE)

D.

Learning rate

Full Access