Labour Day Special - 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: c4sdisc65

ANS-C01 PDF

$38.5

$109.99

3 Months Free Update

  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions

ANS-C01 PDF + Testing Engine

$61.6

$175.99

3 Months Free Update

  • Exam Name: Amazon AWS Certified Advanced Networking - Specialty
  • Last Update: May 5, 2024
  • Questions and Answers: 110
  • Free Real Questions Demo
  • Recommended by Industry Experts
  • Best Economical Package
  • Immediate Access

ANS-C01 Engine

$46.2

$131.99

3 Months Free Update

  • Best Testing Engine
  • One Click installation
  • Recommended by Teachers
  • Easy to use
  • 3 Modes of Learning
  • State of Art Technology
  • 100% Real Questions included

ANS-C01 Practice Exam Questions with Answers Amazon AWS Certified Advanced Networking - Specialty Certification

Question # 6

A company has a total of 30 VPCs. Three AWS Regions each contain 10 VPCs. The company has attached the VPCs in each Region to a transit gateway in that Region. The company also

has set up inter-Region peering connections between the transit gateways.

The company wants to use AWS Direct Connect to provide access from its on-premises location for only four VPCs across the three Regions. The company has provisioned four Direct

Connect connections at two Direct Connect locations.

Which combination of steps will meet these requirements MOST cost-effectively? (Select THREE.)

A.

Create four virtual private gateways. Attach the virtual private gateways to the four VPCs.

B.

Create a Direct Connect gateway. Associate the four virtual private gateways with the Direct Connect gateway.

C.

Create four transit VIFs on each Direct Connect connection. Associate the transit VIFs with the Direct Connect gateway.

D.

Create four transit VIFs on each Direct Connect connection. Associate the transit VIFs with the four virtual private gateways.

E.

Create four private VIFs on each Direct Connect connection to the Direct Connect gateway.

F.

Create an association between the Direct Connect gateway and the transit gateways.

Full Access
Question # 7

A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.

A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.

Which solutions will meet these requirements? (Choose two.)

A.

Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.

B.

Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C.

Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

D.

Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.

E.

Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Full Access
Question # 8

A security team is performing an audit of a company's AWS deployment. The security team is concerned that two applications might be accessing resources that should be blocked by network ACLs and security groups. The applications are deployed across two Amazon Elastic Kubernetes Service (Amazon EKS) clusters that use the Amazon VPC Container Network Interface (CNI) plugin for Kubernetes. The clusters are in separate subnets within the same VPC and have a Cluster Autoscaler configured.

The security team needs to determine which POD IP addresses are communicating with which services throughout the VPC. The security team wants to limit the number of flow logs and wants to examine the traffic from only the two applications.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create VPC flow logs in the default format. Create a filter to gather flow logs only from the EKS nodes. Include the srcaddr field and the dstaddr field in the flow logs.

B.

Create VPC flow logs in a custom format. Set the EKS nodes as the resource Include the pkt-srcaddr field and the pkt-dstaddr field in the flow logs.

C.

Create VPC flow logs in a custom format. Set the application subnets as resources. Include the pkt-srcaddr field and the pkt-dstaddr field in the flow logs.

D.

Create VPC flow logs in a custom format. Create a filter to gather flow logs only from the EKS nodes. Include the pkt-srcaddr field and the pkt-dstaddr field in the flow logs.

Full Access
Question # 9

A network engineer must provide additional safeguards to protect encrypted data at Application Load Balancers (ALBs) through the use of a unique random session key.

What should the network engineer do to meet this requirement?

A.

Change the ALB security policy to a policy that supports TLS 1.2 protocol only

B.

Use AWS Key Management Service (AWS KMS) to encrypt session keys

C.

Associate an AWS WAF web ACL with the ALBs. and create a security rule to enforce forward secrecy (FS)

D.

Change the ALB security policy to a policy that supports forward secrecy (FS)

Full Access
Question # 10

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Full Access
Question # 11

A company hosts a web application on Amazon EC2 instances behind an Application Load Balancer (ALB). The ALB is the origin in an Amazon CloudFront distribution. The company wants to implement a custom authentication system that will provide a token for its authenticated customers.

The web application must ensure that the GET/POST requests come from authenticated customers before it delivers the content. A network engineer must design a solution that gives the web application the ability to identify authorized customers.

What is the MOST operationally efficient solution that meets these requirements?

A.

Use the ALB to inspect the authorized token inside the GET/POST request payload. Use an AWS Lambda function to insert a customized header to inform the web application of an authenticated customer request.

B.

Integrate AWS WAF with the ALB to inspect the authorized token inside the GET/POST request payload. Configure the ALB listener to insert a customized header to inform the web application of an authenticated customer request.

C.

Use an AWS Lambda@Edge function to inspect the authorized token inside the GET/POST request payload. Use the Lambda@Edge function also to insert a customized header to inform the web application of an authenticated customer request.

D.

Set up an EC2 instance that has a third-party packet inspection tool to inspect the authorized token inside the GET/POST request payload. Configure the tool to insert a customized header to inform the web application of an authenticated customer request.

Full Access
Question # 12

A company has several production applications across different accounts in the AWS Cloud. The company operates from the us-east-1 Region only. Only certain partner companies can access the applications. The applications are running on Amazon EC2 instances that are in an Auto Scaling group behind an Application Load Balancer (ALB). The EC2 instances are in private subnets and allow traffic only from the ALB. The ALB is in a public subnet and allows inbound traffic only from partner network IP address ranges over port 80.

When the company adds a new partner, the company must allow the IP address range of the partner network in the security group that is associated with the ALB in each account. A network engineer must implement a solution to centrally manage the partner network IP address ranges.

Which solution will meet these requirements in the MOST operationally efficient manner?

A.

Create an Amazon DynamoDB table to maintain all IP address ranges and security groups that need to be updated. Update the DynamoDB table with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the DynamoDB table to update the security groups. Deploy this solution in all accounts.

B.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Use Amazon EventBridge (Amazon CloudWatch Events) rules to invoke an AWS Lambda function to update security groups whenever a new IP address range is added to the prefix list. Deploy this solution in all accounts.

C.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Share the prefix list across different accounts by using AWS Resource Access Manager (AWS RAM). Update security groups to use the prefix list instead of the partner IP address range. Update the prefix list with the new IP address range when the company adds a new partner.

D.

Create an Amazon S3 bucket to maintain all IP address ranges and security groups that need to be updated. Update the S3 bucket with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the S3 bucket to update the security groups. Deploy this solution in all accounts.

Full Access
Question # 13

An organization is using a VPC endpoint for Amazon S3. When the security group rules for a set of instances were initially configured, access was restricted to allow traffic only to the IP addresses of the Amazon S3 API endpoints in the region from the published JSON file. The application was working properly, but now is logging a growing number of timeouts when connecting with Amazon S3. No internet gateway is configured for the VPC.

Which solution will fix the connectivity failures with the LEAST amount of effort?

A.

Create a Lambda function to update the security group based on AmazonIPSpaceChanged notifications.

B.

Update the VPC routing to direct Amazon S3 prefix-list traffic to the VPC endpoint using the route table APIs.

C.

Update the application server’s outbound security group to use the prefix-list for Amazon S3 in the same region.

D.

Create an additional VPC endpoint for Amazon S3 in the same route table to scale the concurrent connections to Amazon.

Full Access
Question # 14

Your organization has a newly installed 1-Gbps AWS Direct Connect connection. You order the cross-connect from the Direct Connect location provider to the port on your router in the same facility. To enable the use of your first virtual interface, your router must be configured appropriately.

What are the minimum requirements for your router?

A.

1-Gbps Multi Mode Fiber Interface, 802.1Q VLAN, Peer IP Address, BGP Session with MD5.

B.

1-Gbps Single Mode Fiber Interface, 802.1Q VLAN, Peer IP Address, BGP Session with MD5.

C.

IPsec Parameters, Pre-Shared key, Peer IP Address, BGP Session with MD5

D.

BGP Session with MD5, 802.1Q VLAN, Route-Map, Prefix List, IPsec encrypted GRE Tunnel

Full Access
Question # 15

A company plans to deploy a two-tier web application to a new VPC in a single AWS Region. The company has configured the VPC with an internet gateway and four subnets. Two of the subnets are public and have default routes that point to the internet gateway. Two of the subnets are private and share a route table that does not have a default route.

The application will run on a set of Amazon EC2 instances that will be deployed behind an external Application Load Balancer. The EC2 instances must not be directly accessible from the internet. The application will use an Amazon S3 bucket in the same Region to store data. The application will invoke S3 GET API operations and S3 PUT API operations from the EC2 instances. A network engineer must design a VPC architecture that minimizes data transfer cost.

Which solution will meet these requirements?

A.

Deploy the EC2 instances in the public subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

B.

Deploy the EC2 instances in the private subnets. Create a NAT gateway in the VPC. Create default routes in the private subnets to the NAT gateway. Connect to Amazon S3 by using the NAT gateway.

C.

Deploy the EC2 instances in the private subnets. Create an S3 gateway endpoint in the VPSpecify die route table of the private subnets during endpoint creation to create routes to Amazon S3.

D.

Deploy the EC2 instances in the private subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

Full Access
Question # 16

An organization launched an IPv6-only web portal to support IPv6-native mobile clients. Front-end instances launch in an Amazon VPC associated with an appropriate IPv6 CIDR. The VPC IPv4 CIDR is fully utilized. A single subnet exists in each of two Availability Zones with appropriately configured IPv6 CIDR associations. Auto Scaling is properly configured, and no Elastic Load Balancing is used.

Customers say the service is unavailable during peak load times. The network engineer attempts to launch an instance manually and receives the following message: “There are not enough free addresses in subnet ‘subnet-12345677’ to satisfy the requested number of instances.”

What action will resolve the availability problem?

A.

Create a new subnet using a VPC secondary IPv6 CIDR, and associate an IPv6 CIDR. Include the new subnet in the Auto Scaling group.

B.

Create a new subnet using a VPC secondary IPv4 CIDR, and associate an IPv6 CIDR. Include the new subnet in the Auto Scaling group.

C.

Resize the IPv6 CIDR on each of the existing subnets. Modify the Auto Scaling group maximum number of instances.

D.

Add a secondary IPv4 CIDR to the Amazon VPC. Assign secondary IPv4 address space to each of the existing subnets.

Full Access
Question # 17

A retail company is running its service on AWS. The company’s architecture includes Application Load Balancers (ALBs) in public subnets. The ALB target groups are configured to send traffic to backend Amazon EC2 instances in private subnets. These backend EC2 instances can call externally hosted services over the internet by using a NAT gateway.

The company has noticed in its billing that NAT gateway usage has increased significantly. A network engineer needs to find out the source of this increased usage.

Which options can the network engineer use to investigate the traffic through the NAT gateway? (Choose two.)

A.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

B.

Enable NAT gateway access logs. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

C.

Configure Traffic Mirroring on the NAT gateway's elastic network interface. Send the traffic to an additional EC2 instance. Use tools such as tcpdump and Wireshark to query and analyze the mirrored traffic.

D.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

E.

Enable NAT gateway access logs. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

Full Access
Question # 18

A customer has set up multiple VPCs for Dev, Test, Prod, and Management. You need to set up AWS Direct Connect to enable data flow from on-premises to each VPC. The customer has monitoring software running in the Management VPC that collects metrics from the instances in all the other VPCs. Due to budget requirements, data transfer charges should be kept at minimum.

Which design should be recommended?

A.

Create a total of four private VIFs, one for each VPC owned by the customer, and route traffic between VPCs using the Direct Connect link.

B.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs.

C.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs, enable source/destination NAT in the Management VPC.

D.

Create a total of four private VIFs, and enable VPC peering between all VPCs.

Full Access
Question # 19

A company has deployed an AWS Network Firewall firewall into a VPC. A network engineer needs to implement a solution to deliver Network Firewall flow logs to the company’s Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster in the shortest possible time.

Which solution will meet these requirements?

A.

Create an Amazon S3 bucket. Create an AWS Lambda function to load logs into the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster. Enable Amazon Simple Notification Service (Amazon SNS) notifications on the S3 bucket to invoke the Lambda function. Configure flow logs for the firewall. Set the S3 bucket as the destination.

B.

Create an Amazon Kinesis Data Firehose delivery stream that includes the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination. Configure flow logs for the firewall Set the Kinesis Data Firehose delivery stream as the destination for the Network Firewall flow logs.

C.

Configure flow logs for the firewall. Set the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination for the Network Firewall flow logs.

D.

Create an Amazon Kinesis data stream that includes the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination. Configure flow logs for the firewall. Set the Kinesis data stream as the destination for the Network Firewall flow logs.

Full Access
Question # 20

A network engineer needs to standardize a company's approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spoke model. The company's network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.

What should the network engineer do to meet these requirements?

A.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

B.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.

C.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.

D.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Full Access
Question # 21

A company has developed an application on AWS that will track inventory levels of vending machines and initiate the restocking process automatically. The company plans to integrate this application with vending machines and deploy the vending machines in several markets around the world. The application resides in a VPC in the us-east-1 Region. The application consists of an Amazon Elastic Container Service (Amazon ECS) cluster behind an Application Load Balancer (ALB). The communication from the vending machines to the application happens over HTTPS.

The company is planning to use an AWS Global Accelerator accelerator and configure static IP addresses of the accelerator in the vending machines for application endpoint access. The application must be accessible only through the accelerator and not through a direct connection over the internet to the ALB endpoint.

Which solution will meet these requirements?

A.

Configure the ALB in a private subnet of the VPC. Attach an internet gateway without adding routes in the subnet route tables to point to the internet gateway. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB’s security group to only allow inbound traffic from the internet on the ALB listener port.

B.

Configure the ALB in a private subnet of the VPC. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB's security group to only allow inbound traffic from the internet on the ALB listener port.

C.

Configure the ALB in a public subnet of the VPAttach an internet gateway. Add routes in the subnet route tables to point to the internet gateway. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB's security group to only allow inbound traffic from the accelerator's IP addresses on the ALB listener port.

D.

Configure the ALB in a private subnet of the VPC. Attach an internet gateway. Add routes in the subnet route tables to point to the internet gateway. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB's security group to only allow inbound traffic from the accelerator's IP addresses on the ALB listener port.

Full Access
Question # 22

A company has an AWS Direct Connect connection between its on-premises data center in the United States (US) and workloads in the us-east-1 Region. The connection uses a transit VIF to connect the data center to a transit gateway in us-east-1.

The company is opening a new office in Europe with a new on-premises data center in England. A Direct Connect connection will connect the new data center with some workloads that are running in a single VPC in the eu-west-2 Region. The company needs to connect the US data center and us-east-1 with the Europe data center and eu-west-2. A network engineer must establish full connectivity between the data centers and Regions with the lowest possible latency.

How should the network engineer design the network architecture to meet these requirements?

A.

Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

B.

Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

C.

Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

D.

Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

Full Access
Question # 23

A network engineer has deployed an Amazon EC2 instance in a private subnet in a VPC. The VPC has no public subnet. The EC2 instance hosts application code that sends messages to an Amazon Simple Queue Service (Amazon SQS) queue. The subnet has the default network ACL with no modification applied. The EC2 instance has the default security group with no modification applied.

The SQS queue is not receiving messages.

Which of the following are possible causes of this problem? (Choose two.)

A.

The EC2 instance is not attached to an IAM role that allows write operations to Amazon SQS.

B.

The security group is blocking traffic to the IP address range used by Amazon SQS

C.

There is no interface VPC endpoint configured for Amazon SQS

D.

The network ACL is blocking return traffic from Amazon SQS

E.

There is no route configured in the subnet route table for the IP address range used by Amazon SQS

Full Access
Question # 24

A global company operates all its non-production environments out of three AWS Regions: eu-west-1, us-east-1, and us-west-1. The company hosts all its production workloads in two on-premises data centers. The company has 60 AWS accounts and each account has two VPCs in each Region. Each VPC has a virtual private gateway where two VPN connections terminate for resilient connectivity to the data centers. The company has 360 VPN tunnels to each data center, resulting in high management overhead. The total VPN throughput for each Region is 500 Mbps.

The company wants to migrate the production environments to AWS. The company needs a solution that will simplify the network architecture and allow for future growth. The production environments will generate an additional 2 Gbps of traffic per Region back to the data centers. This traffic will increase over time.

Which solution will meet these requirements?

A.

Set up an AWS Direct Connect connection from each data center to AWS in each Region. Create and attach private VIFs to a single Direct Connect gateway. Attach the Direct Connect gateway to all the VPCs. Remove the existing VPN connections that are attached directly to the virtual private gateways.

B.

Create a single transit gateway with VPN connections from each data center. Share the transit gateway with each account by using AWS Resource Access Manager (AWS RAM). Attach the transit gateway to each VPC. Remove the existing VPN connections that are attached directly to the virtual private gateways.

C.

Create a transit gateway in each Region with multiple newly commissioned VPN connections from each data center. Share the transit gateways with each account by using AWS Resource Access Manager (AWS RAM). In each Region, attach the transit gateway to each VPRemove the existing VPN connections that are attached directly to the virtual private gateways.

D.

Peer all the VPCs in each Region to a new VPC in each Region that will function as a centralized transit VPC. Create new VPN connections from each data center to the transit VPCs. Terminate the original VPN connections that are attached to all the original VPCs. Retain the new VPN connection to the new transit VPC in each Region.

Full Access
Question # 25

A company has deployed its AWS environment in a single AWS Region. The environment consists of a few hundred application VPCs, a shared services VPC, and a VPN connection to the company’s on-premises environment. A network engineer needs to implement a transit gateway with the following requirements:

• Application VPCs must be isolated from each other.

• Bidirectional communication must be allowed between the application VPCs and the on-premises network.

• Bidirectional communication must be allowed between the application VPCs and the shared services VPC.

The network engineer creates the transit gateway with options disabled for default route table association and default route table propagation. The network engineer also creates the VPN attachment for the on-premises network and creates the VPC attachments for the application VPCs and the shared services VPC.

The network engineer must meet all the requirements for the transit gateway by designing a solution that needs the least number of transit gateway route tables.

Which combination of actions should the network engineer perform to accomplish this goal? (Choose two.)

A.

Configure a separate transit gateway route table for on premises. Associate the VPN attachment with this transit gateway route table. Propagate all application VPC attachments to this transit gateway route table.

B.

Configure a separate transit gateway route table for each application VPC. Associate each application VPC attachment with its respective transit gateway route table. Propagate the shared services VPC attachment and the VPN attachment to this transit gateway route table.

C.

Configure a separate transit gateway route table for all application VPCs. Associate all application VPCs with this transit gateway route table. Propagate the shared services VPC attachment and the VPN attachment to this transit gateway route table.

D.

Configure a separate transit gateway route table for the shared services VPC. Associate the shared services VPC attachment with this transit gateway route table. Propagate all application VPC attachments to this transit gateway route table.

E.

Configure a separate transit gateway route table for on premises and the shared services VPC. Associate the VPN attachment and the shared services VPC attachment with this transit gateway route table. Propagate all application VPC attachments to this transit gateway route table.

Full Access
Question # 26

A company is building its website on AWS in a single VPC. The VPC has public subnets and private subnets in two Availability Zones. The website has static content such as images. The company is using Amazon S3 to store the content.

The company has deployed a fleet of Amazon EC2 instances as web servers in a private subnet. The EC2 instances are in an Auto Scaling group behind an Application Load Balancer. The EC2 instances will serve traffic, and they must pull content from an S3 bucket to render the webpages. The company is using AWS Direct Connect with a public VIF for on-premises connectivity to the S3 bucket.

A network engineer notices that traffic between the EC2 instances and Amazon S3 is routing through a NAT gateway. As traffic increases, the company's costs are increasing. The network engineer needs to change the connectivity to reduce the NAT gateway costs that result from the traffic between the EC2 instances and Amazon S3.

Which solution will meet these requirements?

A.

Create a Direct Connect private VIF. Migrate the traffic from the public VIF to the private VIF.

B.

Create an AWS Site-to-Site VPN tunnel over the existing public VIF.

C.

Implement interface VPC endpoints for Amazon S3. Update the VPC route table.

D.

Implement gateway VPC endpoints for Amazon S3. Update the VPC route table.

Full Access
Question # 27

A software-as-a-service (SaaS) provider hosts its solution on Amazon EC2 instances within a VPC in the AWS Cloud. All of the provider's customers also have their environments in the AWS Cloud.

A recent design meeting revealed that the customers have IP address overlap with the provider's AWS deployment. The customers have stated that they will not share their internal IP addresses and that they do not want to connect to the provider's SaaS service over the internet.

Which combination of steps is part of a solution that meets these requirements? (Choose two.)

A.

Deploy the SaaS service endpoint behind a Network Load Balancer.

B.

Configure an endpoint service, and grant the customers permission to create a connection to the endpoint service.

C.

Deploy the SaaS service endpoint behind an Application Load Balancer.

D.

Configure a VPC peering connection to the customer VPCs. Route traffic through NAT gateways.

E.

Deploy an AWS Transit Gateway, and connect the SaaS VPC to it. Share the transit gateway with the customers. Configure routing on the transit gateway.

Full Access
Question # 28

A real estate company is building an internal application so that real estate agents can upload photos and videos of various properties. The application will store these photos and videos in an Amazon S3 bucket as objects and will use Amazon DynamoDB to store corresponding metadata. The S3 bucket will be configured to publish all PUT events for new object uploads to an Amazon Simple Queue Service (Amazon SQS) queue.

A compute cluster of Amazon EC2 instances will poll the SQS queue to find out about newly uploaded objects. The cluster will retrieve new objects, perform proprietary image and video recognition and classification update metadata in DynamoDB and replace the objects with new watermarked objects. The company does not want public IP addresses on the EC2 instances.

Which networking design solution will meet these requirements MOST cost-effectively as application usage increases?

A.

Place the EC2 instances in a public subnet. Disable the Auto-assign Public IP option while launching the EC2 instances. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway.

B.

Place the EC2 instances in a private subnet. Create a NAT gateway in a public subnet in the same Availability Zone. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway

C.

Place the EC2 instances in a private subnet. Create an interface VPC endpoint for Amazon SQS. Create gateway VPC endpoints for Amazon S3 and DynamoDB.

D.

Place the EC2 instances in a private subnet. Create a gateway VPC endpoint for Amazon SQS. Create interface VPC endpoints for Amazon S3 and DynamoDB.

Full Access
Question # 29

A company is deploying a new application on AWS. The application uses dynamic multicasting. The company has five VPCs that are all attached to a transit gateway Amazon EC2 instances in each VPC need to be able to register dynamically to receive a multicast transmission.

How should a network engineer configure the AWS resources to meet these requirements?

A.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

B.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

C.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

D.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

Full Access
Question # 30

A network engineer must develop an AWS CloudFormation template that can create a virtual private gateway, a customer gateway, a VPN connection, and static routes in a route table. During testing of the template, the network engineer notes that the CloudFormation template has encountered an error and is rolling back.

What should the network engineer do to resolve the error?

A.

Change the order of resource creation in the CloudFormation template.

B.

Add the DependsOn attribute to the resource declaration for the virtual private gateway. Specify the route table entry resource.

C.

Add a wait condition in the template to wait for the creation of the virtual private gateway.

D.

Add the DependsOn attribute to the resource declaration for the route table entry. Specify the virtual private gateway resource.

Full Access
Question # 31

A company wants to improve visibility into its AWS environment. The AWS environment consists of multiple VPCs that are connected to a transit gateway. The transit gateway connects to an on-premises data center through an AWS Direct Connect gateway and a pair of redundant Direct Connect connections that use transit VIFs. The company must receive notification each time a new route is advertised to AWS from on premises over Direct Connect.

What should a network engineer do to meet these requirements?

A.

Enable Amazon CloudWatch metrics on Direct Connect to track the received routes. Configure a CloudWatch alarm to send notifications when routes change.

B.

Onboard Transit Gateway Network Manager to Amazon CloudWatch Logs Insights. Use Amazon EventBridge (Amazon CloudWatch Events) to send notifications when routes change.

C.

Configure an AWS Lambda function to periodically check the routes on the Direct Connect gateway and to send notifications when routes change.

D.

Enable Amazon CloudWatch Logs on the transit VIFs to track the received routes. Create a metric filter Set an alarm on the filter to send notifications when routes change.

Full Access