Pre-Winter Special - 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: c4sdisc65

Data-Engineer-Associate PDF

$38.5

$109.99

3 Months Free Update

  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions

Data-Engineer-Associate PDF + Testing Engine

$61.6

$175.99

3 Months Free Update

  • Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
  • Last Update: Oct 4, 2024
  • Questions and Answers: 80
  • Free Real Questions Demo
  • Recommended by Industry Experts
  • Best Economical Package
  • Immediate Access

Data-Engineer-Associate Engine

$46.2

$131.99

3 Months Free Update

  • Best Testing Engine
  • One Click installation
  • Recommended by Teachers
  • Easy to use
  • 3 Modes of Learning
  • State of Art Technology
  • 100% Real Questions included

Data-Engineer-Associate Practice Exam Questions with Answers AWS Certified Data Engineer - Associate (DEA-C01) Certification

Question # 6

A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.

The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.

Which solution will meet these requirements?

A.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Configure the output destination to a new path in the existing S3 bucket.

B.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Specify a database name for the output.

C.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Specify a database name for the output.

D.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Configure the output destination to a new path in the existing S3 bucket.

Full Access
Question # 7

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Full Access
Question # 8

A data engineer needs to create an AWS Lambda function that converts the format of data from .csv to Apache Parquet. The Lambda function must run only if a user uploads a .csv file to an Amazon S3 bucket.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an S3 event notification that has an event type of s3:ObjectCreated:*. Use a filter rule to generate notifications only when the suffix includes .csv. Set the Amazon Resource Name (ARN) of the Lambda function as the destination for the event notification.

B.

Create an S3 event notification that has an event type of s3:ObjectTagging:* for objects that have a tag set to .csv. Set the Amazon Resource Name (ARN) of the Lambda function as the destination for the event notification.

C.

Create an S3 event notification that has an event type of s3:*. Use a filter rule to generate notifications only when the suffix includes .csv. Set the Amazon Resource Name (ARN) of the Lambda function as the destination for the event notification.

D.

Create an S3 event notification that has an event type of s3:ObjectCreated:*. Use a filter rule to generate notifications only when the suffix includes .csv. Set an Amazon Simple Notification Service (Amazon SNS) topic as the destination for the event notification. Subscribe the Lambda function to the SNS topic.

Full Access
Question # 9

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Full Access
Question # 10

A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.

Which AWS service or feature will meet these requirements MOST cost-effectively?

A.

AWS Step Functions

B.

AWS Glue workflows

C.

AWS Glue Studio

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

Full Access
Question # 11

A company uses Amazon Athena for one-time queries against data that is in Amazon S3. The company has several use cases. The company must implement permission controls to separate query processes and access to query history among users, teams, and applications that are in the same AWS account.

Which solution will meet these requirements?

A.

Create an S3 bucket for each use case. Create an S3 bucket policy that grants permissions to appropriate individual IAM users. Apply the S3 bucket policy to the S3 bucket.

B.

Create an Athena workgroup for each use case. Apply tags to the workgroup. Create an 1AM policy that uses the tags to apply appropriate permissions to the workgroup.

C.

Create an JAM role for each use case. Assign appropriate permissions to the role for each use case. Associate the role with Athena.

D.

Create an AWS Glue Data Catalog resource policy that grants permissions to appropriate individual IAM users for each use case. Apply the resource policy to the specific tables that Athena uses.

Full Access
Question # 12

A financial company wants to use Amazon Athena to run on-demand SQL queries on a petabyte-scale dataset to support a business intelligence (BI) application. An AWS Glue job that runs during non-business hours updates the dataset once every day. The BI application has a standard data refresh frequency of 1 hour to comply with company policies.

A data engineer wants to cost optimize the company's use of Amazon Athena without adding any additional infrastructure costs.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Configure an Amazon S3 Lifecycle policy to move data to the S3 Glacier Deep Archive storage class after 1 day

B.

Use the query result reuse feature of Amazon Athena for the SQL queries.

C.

Add an Amazon ElastiCache cluster between the Bl application and Athena.

D.

Change the format of the files that are in the dataset to Apache Parquet.

Full Access
Question # 13

An airline company is collecting metrics about flight activities for analytics. The company is conducting a proof of concept (POC) test to show how analytics can provide insights that the company can use to increase on-time departures.

The POC test uses objects in Amazon S3 that contain the metrics in .csv format. The POC test uses Amazon Athena to query the data. The data is partitioned in the S3 bucket by date.

As the amount of data increases, the company wants to optimize the storage solution to improve query performance.

Which combination of solutions will meet these requirements? (Choose two.)

A.

Add a randomized string to the beginning of the keys in Amazon S3 to get more throughput across partitions.

B.

Use an S3 bucket that is in the same account that uses Athena to query the data.

C.

Use an S3 bucket that is in the same AWS Region where the company runs Athena queries.

D.

Preprocess the .csvdata to JSON format by fetchingonly the document keys that the query requires.

E.

Preprocess the .csv data to Apache Parquet format by fetching only the data blocks that are needed for predicates.

Full Access
Question # 14

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Full Access
Question # 15

A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.

The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.

Which solution will meet these requirements MOST cost-effectively?

A.

Use AWS Database Migration Service (AWS DMS) to migrate the Hive metastore into Amazon S3. Configure AWS Glue Data Catalog to scan Amazon S3 to produce the data catalog.

B.

Configure a Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use AWS Glue Data Catalog to store the company's data catalog as an external data catalog.

C.

Configure an external Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use Amazon Aurora MySQL to store the company's data catalog.

D.

Configure a new Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use the new metastore as the company's data catalog.

Full Access
Question # 16

A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.

Which solution will give the company the ability to use Spark to access Athena?

A.

Athena query settings

B.

Athena workgroup

C.

Athena data source

D.

Athena query editor

Full Access
Question # 17

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

Full Access
Question # 18

A company is migrating a legacy application to an Amazon S3 based data lake. A data engineer reviewed data that is associated with the legacy application. The data engineer found that the legacy data contained some duplicate information.

The data engineer must identify and remove duplicate information from the legacy application data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Write a custom extract, transform, and load (ETL) job in Python. Use the DataFramedrop duplicatesf) function by importingthe Pandas library to perform data deduplication.

B.

Write an AWS Glue extract, transform, and load (ETL) job. Usethe FindMatches machine learning(ML) transform to transform the data to perform data deduplication.

C.

Write a custom extract, transform, and load (ETL) job in Python. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

D.

Write an AWS Glue extract, transform, and load (ETL) job. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

Full Access
Question # 19

A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Confiqure an AWS Lambda function to load data from the S3 bucket into a pandas dataframe- Write a SQL SELECT statement on the dataframe to query the required column.

B.

Use S3 Select to write a SQL SELECT statement to retrieve the required column from the S3 objects.

C.

Prepare an AWS Glue DataBrew project to consume the S3 objects and to query the required column.

D.

Run an AWS Glue crawler on the S3 objects. Use a SQL SELECT statement in Amazon Athena to query the required column.

Full Access
Question # 20

A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.

The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.

Which AWS service should the company use to meet these requirements?

A.

AWS Lambda

B.

AWS Database Migration Service (AWS DMS)

C.

AWS Direct Connect

D.

AWS DataSync

Full Access
Question # 21

A data engineer needs to join data from multiple sources to perform a one-time analysis job. The data is stored in Amazon DynamoDB, Amazon RDS, Amazon Redshift, and Amazon S3.

Which solution will meet this requirement MOST cost-effectively?

A.

Use an Amazon EMR provisioned cluster to read from all sources. Use Apache Spark to join the data and perform the analysis.

B.

Copy the data from DynamoDB, Amazon RDS, and Amazon Redshift into Amazon S3. Run Amazon Athena queries directly on the S3 files.

C.

Use Amazon Athena Federated Query to join the data from all data sources.

D.

Use Redshift Spectrum to query data from DynamoDB, Amazon RDS, and Amazon S3 directly from Redshift.

Full Access
Question # 22

A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joinsacross multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.

Which solution will meet these requirements in the MOST operationally efficient way?

A.

Create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create an AWS Glue job that selects the data directly from the view and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

B.

Schedule SQL Server Agent to run a daily SQL query that selects the desired data elements from the EC2 instance-based SQL Server databases. Configure the query to direct the output .csv objects to an S3 bucket. Create an S3 event that invokes an AWS Lambda function to transform the output format from .csv to Parquet.

C.

Use a SQL query to create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create and run an AWS Glue crawler to read the view. Create an AWS Glue job that retrieves the data and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

D.

Create an AWS Lambda function that queries the EC2 instance-based databases by using Java Database Connectivity (JDBC). Configure the Lambda function to retrieve the required data, transform the data into Parquet format, and transfer the data into an S3 bucket. Use Amazon EventBridge to schedule the Lambda function to run every day.

Full Access
Question # 23

A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.

The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.

Which solution will meet this requirement?

A.

Update the AWS Glue security group to allow inbound traffic from the Amazon S3 VPC gateway endpoint.

B.

Configure an S3 bucket policy to explicitly grant the AWS Glue job permissions to access the S3 bucket.

C.

Review the AWS Glue job code to ensure that the AWS Glue connection details include a fully qualified domain name.

D.

Verify that the VPC's route table includes inbound and outbound routes for the Amazon S3 VPC gateway endpoint.

Full Access
Question # 24

A data engineer must orchestrate a series of Amazon Athena queries that will run every day. Each query can run for more than 15 minutes.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

A.

Use an AWS Lambda function and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

B.

Create an AWS Step Functions workflow and add two states. Add the first state before the Lambda function. Configure the second state as a Wait state to periodically check whether the Athena query has finished using the Athena Boto3 get_query_execution API call. Configure the workflow to invoke the next query when the current query has finished running.

C.

Use an AWS Glue Python shell job and the Athena Boto3 client start_query_execution API call to invoke the Athena queries programmatically.

D.

Use an AWS Glue Python shell script to run a sleep timer that checks every 5 minutes to determine whether the current Athena query has finished running successfully. Configure the Python shell script to invoke the next query when the current query has finished running.

E.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the Athena queries in AWS Batch.

Full Access