New Year Special Sale - 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: spcl70

Practice Free Professional-Data-Engineer Google Professional Data Engineer Exam Exam Questions Answers With Explanation

We at Crack4sure are committed to giving students who are preparing for the Google Professional-Data-Engineer Exam the most current and reliable questions . To help people study, we've made some of our Google Professional Data Engineer Exam exam materials available for free to everyone. You can take the Free Professional-Data-Engineer Practice Test as many times as you want. The answers to the practice questions are given, and each answer is explained.

Question # 6

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Question # 7

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Question # 8

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question # 9

MJTelco is building a custom interface to share data. They have these requirements:

They need to do aggregations over their petabyte-scale datasets.

They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Question # 10

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Question # 11

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Question # 12

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Question # 13

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Question # 14

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Question # 15

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Question # 16

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Question # 17

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Question # 18

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Professional-Data-Engineer question answer

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Question # 19

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Question # 20

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in thedashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Question # 21

Your company’s on-premises Apache Hadoop servers are approaching end-of-life, and IT has decided to migrate the cluster to Google Cloud Dataproc. A like-for-like migration of the cluster would require 50 TB of Google Persistent Disk per node. The CIO is concerned about the cost of using that much block storage. You want to minimize the storage cost of the migration. What should you do?

A.

Put the data into Google Cloud Storage.

B.

Use preemptible virtual machines (VMs) for the Cloud Dataproc cluster.

C.

Tune the Cloud Dataproc cluster so that there is just enough disk for all data.

D.

Migrate some of the cold data into Google Cloud Storage, and keep only the hot data in Persistent Disk.

Question # 22

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Question # 23

You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patientrecords. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?

A.

Add capacity (memory and disk space) to the database server by the order of 200.

B.

Shard the tables into smaller ones based on date ranges, and only generate reports with prespecified date ranges.

C.

Normalize the master patient-record table into the patient table and the visits table, and create other necessary tables to avoid self-join.

D.

Partition the table into smaller tables, with one for each clinic. Run queries against the smaller table pairs, and use unions for consolidated reports.

Question # 24

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Question # 25

You work for a large financial institution that is planning to use Dialogflow to create a chatbot for the company's mobile app You have reviewed old chat logs and lagged each conversation for intent based on each customer's stated intention for contacting customer service About 70% of customer requests are simple requests that are solved within 10 intents The remaining 30% of inquiries require much longer, more complicated requests Which intents should you automate first?

A.

Automate the 10 intents that cover 70% of the requests so that live agents can handle more complicated requests

B.

Automate the more complicated requests first because those require more of the agents' time

C.

Automate a blend of the shortest and longest intents to be representative of all intents

D.

Automate intents in places where common words such as "payment" appear only once so the software isn't confused

Question # 26

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Question # 27

You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:

No interaction by the user on the site for 1 hour

Has added more than $30 worth of products to the basket

Has not completed a transaction

You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?

A.

Use a fixed-time window with a duration of 60 minutes.

B.

Use a sliding time window with a duration of 60 minutes.

C.

Use a session window with a gap time duration of 60 minutes.

D.

Use a global window with a time based trigger with a delay of 60 minutes.

Question # 28

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

A.

The message body for the sensor event is too large.

B.

Your custom endpoint has an out-of-date SSL certificate.

C.

The Cloud Pub/Sub topic has too many messages published to it.

D.

Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

Question # 29

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

A.

Disable caching by editing the report settings.

B.

Disable caching in BigQuery by editing table details.

C.

Refresh your browser tab showing the visualizations.

D.

Clear your browser history for the past hour then reload the tab showing the virtualizations.

Question # 30

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

A.

Update the current pipeline and use the drain flag.

B.

Update the current pipeline and provide the transform mapping JSON object.

C.

Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.

D.

Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Question # 31

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Question # 32

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Question # 33

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other’s data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

A.

Load data into different partitions.

B.

Load data into a different dataset for each client.

C.

Put each client’s BigQuery dataset into a different table.

D.

Restrict a client’s dataset to approved users.

E.

Only allow a service account to access the datasets.

F.

Use the appropriate identity and access management (IAM) roles for each client’s users.

Question # 34

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Question # 35

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Question # 36

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Question # 37

Cloud Bigtable is a recommended option for storing very large amounts of ____________________________?

A.

multi-keyed data with very high latency

B.

multi-keyed data with very low latency

C.

single-keyed data with very low latency

D.

single-keyed data with very high latency

Question # 38

Your company is using WHILECARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:

# Syntax error : Expected end of statement but got “-“ at [4:11]

SELECT age

FROM

bigquery-public-data.noaa_gsod.gsod

WHERE

age != 99

AND_TABLE_SUFFIX = ‘1929’

ORDER BY

age DESC

Which table name will make the SQL statement work correctly?

A.

‘bigquery-public-data.noaa_gsod.gsod‘

B.

bigquery-public-data.noaa_gsod.gsod*

C.

‘bigquery-public-data.noaa_gsod.gsod’*

D.

‘bigquery-public-data.noaa_gsod.gsod*`

Question # 39

Which of the following are feature engineering techniques? (Select 2 answers)

A.

Hidden feature layers

B.

Feature prioritization

C.

Crossed feature columns

D.

Bucketization of a continuous feature

Question # 40

Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)

A.

The wide model is used for memorization, while the deep model is used for generalization.

B.

A good use for the wide and deep model is a recommender system.

C.

The wide model is used for generalization, while the deep model is used for memorization.

D.

A good use for the wide and deep model is a small-scale linear regression problem.

Question # 41

When a Cloud Bigtable node fails, ____ is lost.

A.

all data

B.

no data

C.

the last transaction

D.

the time dimension

Question # 42

Which of the following is not possible using primitive roles?

A.

Give a user viewer access to BigQuery and owner access to Google Compute Engine instances.

B.

Give UserA owner access and UserB editor access for all datasets in a project.

C.

Give a user access to view all datasets in a project, but not run queries on them.

D.

Give GroupA owner access and GroupB editor access for all datasets in a project.

Question # 43

Your company operates in three domains: airlines, hotels, and ride-hailing services. Each domain has two teams: analytics and data science, which create data assets in BigQuery with the help of a central data platform team. However, as each domain is evolving rapidly, the central data platform team is becoming a bottleneck. This is causing delays in deriving insights from data, and resulting in stale data when pipelines are not kept up to date. You need to design a data mesh architecture by using Dataplex to eliminate the bottleneck. What should you do?

A.

1. Create one lake for each team. Inside each lake, create one zone for each domain.2. Attach each of the BigQuery datasets created by the individual teams as assets to the respective zone.3. Have the central data platform team manage all zones' data assets.

B.

1 Create one lake for each team. Inside each lake, create one zone for each domain.2. Attach each to the BigQuory datasets created by the individual teams as assets to the respective zone.3. Direct each domain to manage their own zone's data assets.

C.

1 Create one lake for each domain. Inside each lake, create one zone for each team.2. Attach each of the BigQuery datasets created by the individual teams as assets to the respective zone.3. Direct each domain to manage their own lake's data assets.

D.

1 Create one lake for each domain. Inside each lake, create one zone for each team.2. Attach each of the BigQuery datasets created by the individual teams as assets to the respective zone.3. Have the central data platform team manage all lakes' data assets.

Question # 44

An aerospace company uses a proprietary data format to store its night data. You need to connect this new data source to BigQuery and stream the data into BigQuery. You want to efficiency import the data into BigQuery where consuming as few resources as possible. What should you do?

A.

Use a standard Dataflow pipeline to store the raw data m BigQuery and then transform the format later when the data is used

B.

Write a she script that triggers a Cloud Function that performs periodic ETL batch jobs on the new data source

C.

Use Apache Hive to write a Dataproc job that streams the data into BigQuery in CSV format

D.

Use an Apache Beam custom connector to write a Dataflow pipeline that streams the data into BigQuery in Avro format

Question # 45

Your startup has a web application that currently serves customers out of a single region in Asia. You are targeting funding that will allow your startup lo serve customers globally. Your current goal is to optimize for cost, and your post-funding goat is to optimize for global presence and performance. You must use a native JDBC driver. What should you do?

A.

Use Cloud Spanner to configure a single region instance initially. and then configure multi-region C oud Spanner instances after securing funding.

B.

Use a Cloud SQL for PostgreSQL highly available instance first, and 8»gtable with US. Europe, and Asiareplication alter securing funding

C.

Use a Cloud SQL for PostgreSQL zonal instance first and Bigtable with US. Europe, and Asia after securing funding.

D.

Use a Cloud SOL for PostgreSQL zonal instance first, and Cloud SOL for PostgreSQL with highly available configuration after securing funding.

Question # 46

You need to create a near real-time inventory dashboard that reads the main inventory tables in your BigQuery data warehouse. Historical inventory data is stored as inventory balances by item and location. You have several thousand updates to inventory every hour. You want to maximize performance of the dashboard and ensure that the data is accurate. What should you do?

A.

Leverage BigQuery UPDATE statements to update the inventory balances as they are changing.

B.

Partition the inventory balance table by item to reduce the amount of data scanned with each inventory update.

C.

Use the BigQuery streaming the stream changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.

D.

Use the BigQuery bulk loader to batch load inventory changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.

Question # 47

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Question # 48

Which of these statements about exporting data from BigQuery is false?

A.

To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B.

The only supported export destination is Google Cloud Storage.

C.

Data can only be exported in JSON or Avro format.

D.

The only compression option available is GZIP.

Question # 49

What are two methods that can be used to denormalize tables in BigQuery?

A.

1) Split table into multiple tables; 2) Use a partitioned table

B.

1) Join tables into one table; 2) Use nested repeated fields

C.

1) Use a partitioned table; 2) Join tables into one table

D.

1) Use nested repeated fields; 2) Use a partitioned table

Question # 50

To run a TensorFlow training job on your own computer using Cloud Machine Learning Engine, what would your command start with?

A.

gcloud ml-engine local train

B.

gcloud ml-engine jobs submit training

C.

gcloud ml-engine jobs submit training local

D.

You can't run a TensorFlow program on your own computer using Cloud ML Engine .

Question # 51

You are administering a BigQuery on-demand environment. Your business intelligence tool is submitting hundreds of queries each day that aggregate a large (50 TB) sales history fact table at the day and month levels. These queries have a slow response time and are exceeding cost expectations. You need to decrease response time, lower query costs, and minimize maintenance. What should you do?

A.

Build materialized views on top of the sales table to aggregate data at the day and month level.

B.

Build authorized views on top of the sales table to aggregate data at the day and month level.

C.

Enable Bl Engine and add your sales table as a preferred table.

D.

Create a scheduled query to build sales day and sales month aggregate tables on an hourly basis.

Question # 52

What are the minimum permissions needed for a service account used with Google Dataproc?

A.

Execute to Google Cloud Storage; write to Google Cloud Logging

B.

Write to Google Cloud Storage; read to Google Cloud Logging

C.

Execute to Google Cloud Storage; execute to Google Cloud Logging

D.

Read and write to Google Cloud Storage; write to Google Cloud Logging

Question # 53

Your new customer has requested daily reports that show their net consumption of Google Cloud compute resources and who used the resources. You need to quickly and efficiently generate these daily reports. What should you do?

A.

Do daily exports of Cloud Logging data to BigQuery. Create views filtering by project, log type, resource, and user.

B.

Filter data in Cloud Logging by project, resource, and user; then export the data in CSV format.

C.

Filter data in Cloud Logging by project, log type, resource, and user, then import the data into BigQuery.

D.

Export Cloud Logging data to Cloud Storage in CSV format. Cleanse the data using Dataprep, filtering by project, resource, and user.

Question # 54

You need to choose a database for a new project that has the following requirements:

Fully managed

Able to automatically scale up

Transactionally consistent

Able to scale up to 6 TB

Able to be queried using SQL

Which database do you choose?

A.

Cloud SQL

B.

Cloud Bigtable

C.

Cloud Spanner

D.

Cloud Datastore

Question # 55

You need to copy millions of sensitive patient records from a relational database to BigQuery. The total size of the database is 10 TB. You need to design a solution that is secure and time-efficient. What should you do?

A.

Export the records from the database as an Avro file. Upload the file to GCS using gsutil, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

B.

Export the records from the database as an Avro file. Copy the file onto a Transfer Appliance and send it to Google, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

C.

Export the records from the database into a CSV file. Create a public URL for the CSV file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the CSV file into BigQuery using the BigQuery web UI in the GCP Console.

D.

Export the records from the database as an Avro file. Create a public URL for the Avro file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

Question # 56

Your organization has been collecting and analyzing data in Google BigQuery for 6 months. The majority of the data analyzed is placed in a time-partitioned table namedevents_partitioned. To reduce the cost of queries, your organization created a view calledevents, which queries only the last 14 days of data. The view is described in legacy SQL. Next month, existing applications will be connecting to BigQuery to read theeventsdata via an ODBC connection. You need to ensure the applications can connect. Which two actions should you take? (Choose two.)

A.

Create a new view over events using standard SQL

B.

Create a new partitioned table using a standard SQL query

C.

Create a new view over events_partitioned using standard SQL

D.

Create a service account for the ODBC connection to use for authentication

E.

Create a Google Cloud Identity and Access Management (Cloud IAM) role for the ODBC connection and shared “events”

Question # 57

You have an Oracle database deployed in a VM as part of a Virtual Private Cloud (VPC) network. You want to replicate and continuously synchronize 50 tables to BigQuery. You want to minimize the need to manage infrastructure. What should you do?

A.

Create a Datastream service from Oracle to BigQuery, use a private connectivity configuration to the same VPC network, and a connection profile to BigQuery.

B.

Create a Pub/Sub subscription to write to BigQuery directly Deploy the Debezium Oracle connector to capture changes in the Oracle database, and sink to the Pub/Sub topic.

C.

Deploy Apache Kafka in the same VPC network, use Kafka Connect Oracle Change Data Capture (CDC), and Dataflow to stream the Kafka topic to BigQuery.

D.

Deploy Apache Kafka in the same VPC network, use Kafka Connect Oracle change data capture (CDC), and the Kafka Connect Google BigQuery Sink Connector.

Question # 58

You are troubleshooting your Dataflow pipeline that processes data from Cloud Storage to BigQuery. You have discovered that the Dataflow worker nodes cannot communicate with one another Your networking team relies on Google Cloud network tags to define firewall rules You need to identify the issue while following Google-recommended networking security practices. What should you do?

A.

Determine whether your Dataflow pipeline has a custom network tag set.

B.

Determine whether there is a firewall rule set to allow traffic on TCP ports 12345 and 12346 for the Dataflow network tag.

C.

Determine whether your Dataflow pipeline is deployed with the external IP address option enabled.

D.

Determine whether there is a firewall rule set to allow traffic on TCP ports 12345 and 12346 on the subnet used by Dataflow workers.

Question # 59

You are working on a linear regression model on BigQuery ML to predict a customer's likelihood of purchasing your company's products. Your model uses a city name variable as a key predictive component in order to train and serve the model your data must be organized in columns. You want to prepare your data using the least amount of coding while maintaining the predictable variables. What should you do?

A.

Use SQL in BigQuery to transform the stale column using a one-hot encoding method, and make each city a column with binary values.

B.

Create a new view with BigQuery that does not include a column which city information.

C.

Cloud Data Fusion to assign each city to a region that is labeled as 1, 2 3, 4, or 5, and then use that number to represent the city in the model.

D.

Use TensorFlow to create a categorical variable with a vocabulary list. Create the vocabulary file and upload that as part of your model to BigQuery ML.

Question # 60

Your team is responsible for developing and maintaining ETLs in your company. One of your Dataflow jobs is failing because of some errors in the input data, and you need to improve reliability of the pipeline (incl. being able to reprocess all failing data).

What should you do?

A.

Add a filtering step to skip these types of errors in the future, extract erroneous rows from logs.

B.

Add a try… catch block to your DoFn that transforms the data, extract erroneous rows from logs.

C.

Add a try… catch block to your DoFn that transforms the data, write erroneous rows to PubSub directly from the DoFn.

D.

Add a try… catch block to your DoFn that transforms the data, use a sideOutput to create a PCollection that can be stored to PubSub later.

Question # 61

Which of the following is NOT a valid use case to select HDD (hard disk drives) as the storage for Google Cloud Bigtable?

A.

You expect to store at least 10 TB of data.

B.

You will mostly run batch workloads with scans and writes, rather than frequently executing random reads of a small number of rows.

C.

You need to integrate with Google BigQuery.

D.

You will not use the data to back a user-facing or latency-sensitive application.

Question # 62

Which of these sources can you not load data into BigQuery from?

A.

File upload

B.

Google Drive

C.

Google Cloud Storage

D.

Google Cloud SQL

Question # 63

When you store data in Cloud Bigtable, what is the recommended minimum amount of stored data?

A.

500 TB

B.

1 GB

C.

1 TB

D.

500 GB

Question # 64

When running a pipeline that has a BigQuery source, on your local machine, you continue to get permission denied errors. What could be the reason for that?

A.

Your gcloud does not have access to the BigQuery resources

B.

BigQuery cannot be accessed from local machines

C.

You are missing gcloud on your machine

D.

Pipelines cannot be run locally

Question # 65

Which methods can be used to reduce the number of rows processed by BigQuery?

A.

Splitting tables into multiple tables; putting data in partitions

B.

Splitting tables into multiple tables; putting data in partitions; using the LIMIT clause

C.

Putting data in partitions; using the LIMIT clause

D.

Splitting tables into multiple tables; using the LIMIT clause

Question # 66

Which of these are examples of a value in a sparse vector? (Select 2 answers.)

A.

[0, 5, 0, 0, 0, 0]

B.

[0, 0, 0, 1, 0, 0, 1]

C.

[0, 1]

D.

[1, 0, 0, 0, 0, 0, 0]

Question # 67

What Dataflow concept determines when a Window's contents should be output based on certain criteria being met?

A.

Sessions

B.

OutputCriteria

C.

Windows

D.

Triggers

Question # 68

What are two of the benefits of using denormalized data structures in BigQuery?

A.

Reduces the amount of data processed, reduces the amount of storage required

B.

Increases query speed, makes queries simpler

C.

Reduces the amount of storage required, increases query speed

D.

Reduces the amount of data processed, increases query speed

Question # 69

What is the HBase Shell for Cloud Bigtable?

A.

The HBase shell is a GUI based interface that performs administrative tasks, such as creating and deleting tables.

B.

The HBase shell is a command-line tool that performs administrative tasks, such as creating and deleting tables.

C.

The HBase shell is a hypervisor based shell that performs administrative tasks, such as creating and deleting new virtualized instances.

D.

The HBase shell is a command-line tool that performs only user account management functions to grant access to Cloud Bigtable instances.

Question # 70

You want to use a BigQuery table as a data sink. In which writing mode(s) can you use BigQuery as a sink?

A.

Both batch and streaming

B.

BigQuery cannot be used as a sink

C.

Only batch

D.

Only streaming

Question # 71

Which of these rules apply when you add preemptible workers to a Dataproc cluster (select 2 answers)?

A.

Preemptible workers cannot use persistent disk.

B.

Preemptible workers cannot store data.

C.

If a preemptible worker is reclaimed, then a replacement worker must be added manually.

D.

A Dataproc cluster cannot have only preemptible workers.

Question # 72

You have a data processing application that runs on Google Kubernetes Engine (GKE). Containers need to be launched with their latest available configurations from a container registry. Your GKE nodes need to have GPUs. local SSDs, and 8 Gbps bandwidth. You want to efficiently provision the data processing infrastructure and manage the deployment process. What should you do?

A.

Use Compute Engi.no startup scriots to pull container Images, and use gloud commands to provision the infrastructure.

B.

Use GKE to autoscale containers, and use gloud commands to provision the infrastructure.

C.

Use Cloud Build to schedule a job using Terraform build to provision the infrastructure and launch with the most current container images.

D.

Use Dataflow to provision the data pipeline, and use Cloud Scheduler to run the job.

Question # 73

You are migrating an application that tracks library books and information about each book, such as author or year published, from an on-premises data warehouse to BigQuery In your current relational database, the author information is kept in a separate table and joined to the book information on a common key Based on Google's recommended practice for schema design, how would you structure the data to ensure optimal speed of queries about the author of each book that has been borrowed?

A.

Keep the schema the same, maintain the different tables for the book and each of the attributes, and query as you are doing today

B.

Create a table that is wide and includes a column for each attribute, including the author's first name, last name, date of birth, etc

C.

Create a table that includes information about the books and authors, but nest the author fields inside the author column

D.

Keep the schema the same, create a view that joins all of the tables, and always query the view

Question # 74

You want to migrate an on-premises Hadoop system to Cloud Dataproc. Hive is the primary tool in use, and the data format is Optimized Row Columnar (ORC). All ORC files have been successfully copied to a Cloud Storage bucket. You need to replicate some data to the cluster’s local Hadoop Distributed File System (HDFS) to maximize performance. What are two ways to start using Hive in Cloud Dataproc? (Choose two.)

A.

Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to HDFS. Mount the Hive tables locally.

B.

Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to any node of the Dataproc cluster. Mount the Hive tables locally.

C.

Run the gsutil utility to transfer all ORC files from the Cloud Storage bucket to the master node of the Dataproc cluster. Then run the Hadoop utility to copy them do HDFS. Mount the Hive tables from HDFS.

D.

Leverage Cloud Storage connector for Hadoop to mount the ORC files as external Hive tables. Replicate external Hive tables to the native ones.

E.

Load the ORC files into BigQuery. Leverage BigQuery connector for Hadoop to mount the BigQuery tables as external Hive tables. Replicate external Hive tables to the native ones.

Question # 75

Your infrastructure team has set up an interconnect link between Google Cloud and the on-premises network. You are designing a high-throughput streaming pipeline to ingest data in streaming from an Apache Kafka cluster hosted on-premises. You want to store the data in BigQuery, with as minima! latency as possible. What should you do?

A.

Use a proxy host in the VPC in Google Cloud connecting to Kafka. Write a Dataflow pipeline, read data from the proxy host, and write the data to BigQuery.

B.

Setup a Kafka Connect bridge between Kafka and Pub/Sub. Use a Google-provided Dataflow template to read the data from Pub/Sub, and write the data to BigQuery.

C.

Setup a Kafka Connect bridge between Kafka and Pub/Sub. Write a Dataflow pipeline, read the data from Pub/Sub, and write the data toBigQuery.

D.

Use Dataflow, write a pipeline that reads the data from Kafka, and writes the data to BigQuery.

Question # 76

You stream order data by using a Dataflow pipeline, and write the aggregated result to Memorystore. You provisioned a Memorystore for Redis instance with Basic Tier. 4 GB capacity, which is used by 40 clients for read-only access. You are expecting the number of read-only clients to increase significantly to a few hundred and you need to be able to support the demand. You want to ensure that read and write access availability is not impacted, and any changes you make can be deployed quickly. What should you do?

A.

Create multiple new Memorystore for Redis instances with Basic Tier (4 GB capacity) Modify the Dataflow pipeline and new clients to use all instances

B.

Create a new Memorystore for Redis instance with Standard Tier Set capacity to 4 GB and read replica to No read replicas (high availability only). Delete the old instance.

C.

Create a new Memorystore for Memcached instance Set a minimum of three nodes, and memory per node to 4 GB. Modify the Dataflow pipeline and all clients to use the Memcached instance Delete the old instance.

D.

Create a new Memorystore for Redis instance with Standard Tier Set capacity to 5 GB and create multiple read replicas Delete the old instance.

Professional-Data-Engineer PDF

$33

$109.99

3 Months Free Update

  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions

Professional-Data-Engineer PDF + Testing Engine

$52.8

$175.99

3 Months Free Update

  • Exam Name: Google Professional Data Engineer Exam
  • Last Update: Dec 15, 2025
  • Questions and Answers: 387
  • Free Real Questions Demo
  • Recommended by Industry Experts
  • Best Economical Package
  • Immediate Access

Professional-Data-Engineer Engine

$39.6

$131.99

3 Months Free Update

  • Best Testing Engine
  • One Click installation
  • Recommended by Teachers
  • Easy to use
  • 3 Modes of Learning
  • State of Art Technology
  • 100% Real Questions included